Acta Crystallographica Section C
Crystal Structure

trans-(4-Amino-2,2,6,6-tetramethyl-piperidine- N^{4})bis(pentane-2,4-dion-ato- O, O^{\prime})(triphenylphosphine- P)cobalt(III) hexafluorophosphate dichloromethane solvate

Takayoshi Suzuki,* Masahiro Ogita and Sumio Kaizaki

Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka 560-0043, Japan
Correspondence e-mail: suzuki@chem.sci.osaka-u.ac.jp
Received 28 September 1999
Accepted 19 January 2000
The complex cation in the title compound, $\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}-\right.$ $\left.\left(\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \mathrm{PF}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, is the first example of a $\mathrm{Co}^{\text {III }}$ complex in which a trans configuration for the coordinated monodentate phosphine and amine ligands has been confirmed by X-ray analysis. Owing to the large steric bulkiness of the axial PPh_{3} ligands influencing the interaction with the equatorial acetylacetonate ligands, the acetylacetonate planes bend away considerably from the PPh_{3} ligands.

Comment

In previous studies, we have reported that trans$\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$(Hacac is acetylacetone) is highly reactive toward substitution of the coordinated PPh_{3}. For example, the reactions with strong Lewis bases such as PMe_{3} and CN^{-} stereoselectively gave trans-[Co(acac $\left.)_{2}\left(\mathrm{PMe}_{3}\right)_{2}\right]^{+}$and trans-$\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{CN})_{2}\right]^{-}$, respectively (Suzuki et al., 1998). Furthermore, the reaction with an equimolar amount of substituted pyridine or amine derivatives (N -ligands) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded trans- $\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)(\mathrm{N} \text {-ligand) }]^{+}\right.$in an almost quantitative yield (Suzuki et al., 1996; Ogita et al., 2000). These complexes are novel examples of $\mathrm{Co}^{\mathrm{III}}$ complexes in which monodentate phosphine and amine ligands are located in trans positions (Katoh et al., 1984), and there has been no reported X-ray analysis of such complexes. We report here the single-crystal structure determination of the title complex, (I), which is the product of the reaction of trans$\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ with 4-amino-2,2,6,6-tetramethylpiperidine (atmp).

The X-ray analysis confirmed the trans configuration for the phosphine and amine ligands in the cation of (I) (Fig. 1), as suggested by NMR spectroscopy in a CDCl_{3} solution. The most remarkable structural feature of the cation in (I) is the bending of the equatorial acac ligand planes away from the axial PPh_{3} ligand. The bending angles of the acac plane 1 (defined by O1, O2, C2, C3 and C4) and acac plane 2 (defined
by $\mathrm{O} 3, \mathrm{O} 4, \mathrm{C} 7, \mathrm{C} 8$ and C 9) from the equatorial four-oxygen coordination plane (defined by $\mathrm{O} 1, \mathrm{O} 2, \mathrm{O} 3$ and O 4) are 9.8 (3) and $11.5(3)^{\circ}$, respectively. The dihedral angle between the two acac planes is $21.2(3)^{\circ}$. Such a bending structure was also found in trans-[$\left.\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \mathrm{PF}_{6}$ (Suzuki et al., 2000) and trans-[Co(acac) $)_{2}\left(\mathrm{PPh}_{3}\right)\left(\mathrm{NIT}_{4} \mathrm{py}\right.$ or IM 4 py$\left.)\right] \mathrm{PF}_{6}$ [Ogita et al., 2000; NIT4py is 2-(4-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1H-imidazolyl-1-oxy 3-oxide and IM4py is 2-(4-pyridyl)-4,4,5,5-tetramethyl-4,5-dihydro-1 H -imidazolyl-1-oxy], and resulted from the large steric bulkiness of the axial PPh_{3} ligand influencing the interaction with the equatorial acac ligands. The three phenyl rings [phenyl(1) C11-C16, phenyl(2) C17-C22 and phenyl(3) C23-C28] of PPh_{3} have dihedral angles of 17.1 (3), 44.3 (2) and 75.6 (3) ${ }^{\circ}$, respectively, with the equatorial four-oxygen coordination plane. The other structural parameters concerning the $\mathrm{Co}^{\mathrm{III}}-\mathrm{acac}$ moiety are normal; the $\mathrm{Co}-\mathrm{O}$ bond lengths are in the range 1.872 (4)-1.897 (4) \AA and the acac bite angles $(\mathrm{O}-\mathrm{Co}-\mathrm{O})$ are $95.0(2)$ and $94.6(2)^{\circ}$. These lengths and angles are similar to those in trans- $\left[\mathrm{Co}(\mathrm{acac})_{2}(\mathrm{CN})_{2}\right]^{-}$, trans- $\left[\mathrm{Co}(\mathrm{acac})_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]^{+}$(Suzuki et al., 2000) and $\left[\mathrm{Co}(\mathrm{acac})_{3}\right]$ (Kruger \& Reynhardt, 1974).

(I)

In the cation of (I), the atmp ligand is coordinated to $\mathrm{Co}^{\mathrm{III}}$ through the primary amine (N1) and the $\mathrm{Co}-\mathrm{N} 1$ bond length is 2.014 (5) \AA. This is, to our best knowledge, the first X-ray structural analysis of a metal complex containing atmp, while for its oxidized nitroxide radical, 4-amino-2,2,6,6-tetra-methylpiperidinyl-1-oxide (amino-TEMPO), the crystal structure of the $\mathrm{Ni}^{\mathrm{II}}$ complex, trans- $\left[\mathrm{Ni}(\mathrm{hfac})_{2}\right.$ (aminoTEMPO) $\left(\mathrm{CH}_{3} \mathrm{OH}\right)$] (hfac is 1,1,1,5,5,5-hexafluoropentane-2,4-dionate), has already been reported (Cervantes-Lee \& Porter, 1991). In (I), the six-membered piperidine ring of atmp adopts an ideal chair conformation and the coordinated amino group is in an equatorial position. The piperidyl group is oriented toward the void between two acac ligands, the torsion angle of the bisector of $\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 4$ and the $\mathrm{N} 1-\mathrm{C} 29$ with respect to the $\mathrm{Co}-\mathrm{N} 1$ bond, i.e. $X-\mathrm{Co}-\mathrm{N} 1-\mathrm{C} 29$, where X is the midpoint of $\mathrm{O} 1 \cdots \mathrm{O} 4$, being only 4.7°. This orientation would effectively minimize the steric interaction between the piperidyl group and the bent acac planes.

The Co-P bond length in (I) is 2.292 (2) \AA, which is shorter by $c a 0.1 \AA$ than that $(2.3887 \AA)$ in trans- $\left[\mathrm{Co}(\mathrm{acac})_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ (Suzuki et al., 2000). Since in trans-[Co(acac) $2_{2}{ }^{-}$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ the steric interaction between two PPh_{3} and acac ligands occurs at both sides of the equatorial four-oxygen coordination plane, the substitution of one of the PPh_{3} ligands by atmp may give rise to a reduction in this steric interaction
on one side. As a result, shortening of the remaining $\mathrm{Co}-$ PPh_{3} bond is induced, which causes the bending of the acac planes. Although many cobaloxime derivatives containing a tertiary phosphine have been analyzed (Bresciani-Pahor et al., 1985), most of them have an anionic ligand or an organic group at the trans position to the phosphine, and no complexes with neutral N -ligands such as pyridines or amines have been reported so far. The $\mathrm{Co}-\mathrm{P}$ bond lengths in the cobaloxime derivatives vary from 2.286 to $2.460 \AA$, depending on the type of trans-positioned ligand. As an example, the Co-P bond length in the structurally related 3,5 -di-tert-butylcatecholate monoanion (3,5-DBcatH) complex, trans $-\left[\mathrm{Co}(\mathrm{Hdmg})_{2^{-}}\right.$ $\left.\left(\mathrm{PPh}_{3}\right)(3,5-\mathrm{DBcatH})\right]$ (Hdmg is the dimethylglyoximate monoanion), is 2.316 (1) \AA (Simándi et al., 1995).

Figure 1
A perspective view of the complex cation in (I). H atoms have been omitted for clarity and displacement ellipsoids are drawn at the 40% probability level.

Experimental

Compound (I) was prepared by a reaction of trans-[Co(acac) 2_{2} $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \mathrm{PF}_{6}$ and atmp (molar ratio 1:1) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature, precipitated by adding $\mathrm{Et}_{2} \mathrm{O}$ and recrystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ (yield 77\%).

Crystal data

$\left[\mathrm{Co}\left(\mathrm{C}_{5} \mathrm{H}_{7} \mathrm{O}_{2}\right)_{2}\left(\mathrm{C}_{9} \mathrm{H}_{20} \mathrm{~N}_{2}\right)-\right.$
$\left.\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)\right] \mathrm{PF}_{6} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$M_{r}=905.61$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=15.169$ (10) \AA
$b=25.197$ (8) \AA
$c=11.638$ (6) \AA
$V=4448$ (3) \AA^{3}
$Z=4$
Data collection
Rigaku AFC-5R diffractometer $\omega / 2 \theta$ scans
Absorption correction: by integration (Coppens et al., 1965)
$T_{\text {min }}=0.843, T_{\text {max }}=0.922$
9217 measured reflections 7133 independent reflections (plus 389 Friedel-related reflections)
3148 reflections with $F>4 \sigma(F)$

```
\(D_{x}=1.352 \mathrm{Mg} \mathrm{m}^{-3}\)
Mo \(K \alpha\) radiation
Cell parameters from 25
        reflections
    \(\theta=11.1-12.4^{\circ}\)
\(\mu=0.641 \mathrm{~mm}^{-1}\)
\(T=296.2 \mathrm{~K}\)
Plate, dark red
\(0.32 \times 0.28 \times 0.13 \mathrm{~mm}\)
\(R_{\text {int }}=0.022\)
\(\theta_{\text {max }}=30^{\circ}\)
\(h=-9 \rightarrow 21\)
\(k=0 \rightarrow 35\)
\(l=-7 \rightarrow 16\)
3 standard reflections
    every 150 reflections
    intensity decay: \(1.97 \%\)
```


Refinement

Refinement on F^{2}
$R(F)=0.051$
$w R\left(F^{2}\right)=0.193$
$S=0.969$
7522 reflections
518 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.1 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.031$
$\Delta \rho_{\text {max }}=0.45 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\min }=-0.52 \mathrm{e} \mathrm{A}^{-3}$
Absolute structure: Flack (1983)
Flack parameter $=-0.01(3)$

Table 1
Selected geometric parameters ($\mathrm{A},{ }^{\circ}$).

Co-P1	$2.292(2)$	$\mathrm{Co}-\mathrm{O} 3$	$1.897(4)$
$\mathrm{Co}-\mathrm{O} 1$	$1.872(4)$	$\mathrm{Co}-\mathrm{O} 4$	$1.880(4)$
$\mathrm{Co}-\mathrm{O} 2$	$1.875(5)$	$\mathrm{Co}-\mathrm{N} 1$	$2.014(5)$
			$94.6(2)$
$\mathrm{P} 1-\mathrm{Co}-\mathrm{N} 1$	$957.2(2)$	$\mathrm{O} 3-\mathrm{Co}-\mathrm{O} 4$	
$\mathrm{O} 1-\mathrm{Co}-\mathrm{O} 2$	$9.0(2)$		

The F atoms were positionally disordered and were assumed to be three sets of arrangements with occupancies of $0.5,0.25$ and 0.25 , and were refined isotropically. H -atom coordinates were refined with a fixed bond length, except for methyl H atoms which were assumed as idealized tetrahedral arrangements.

Data collection and cell refinement: Rigaku/AFC Diffractometer Control Software (Rigaku Corporation, 1985); data reduction: TEXSAN (Molecular Structure Corporation and Rigaku Corporation, 1999); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP (Johnson, 1970); software used to prepare material for publication: TEXSAN.

We thank Professor K. Kashiwabara of Nagoya University for valuable discussions. This work was supported in part by Grant-in-Aid for Scientific Research No. 09740489 from the Ministry of Education, Science and Culture, Japan.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1277). Services for accessing these data are described at the back of the journal.

References

Bresciani-Pahor, N., Forcolin, M., Marzilli, L. G., Randaccio, L., Summers, M. F. \& Toscano, P. J. (1985). Coord. Chem. Rev. 63, 1-125.

Cervantes-Lee, F. \& Porter, L. C. (1991). Acta Cryst. C47, 2312-2315.
Coppens, P., Leiserowitz, L. \& Rabinovich, D. (1965). Acta Cryst. 18, 1035-1038. Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Johnson, C. K. (1970). ORTEP. Report ORNL-3794, 2nd revision. Oak Ridge National Laboratory, Tennessee, USA.
Katoh, K., Sugiura, H., Kashiwabara, K. \& Fujita, J. (1984). Bull. Chem. Soc. Jpn, 57, 3580-3586.
Kruger, G. J. \& Reynhardt, E. C. (1974). Acta Cryst. B30, 822-824.
Molecular Structure Corporation \& Rigaku Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan.
Ogita, M., Yamamoto, Y., Suzuki, T. \& Kaizaki, S. (2000). In preparation.
Rigaku Corporation (1985). Rigaku/AFC Diffractometer Control Software. Rigaku Corporation, Akishima-shi, Tokyo 196-8666, Japan.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1993). SHELXL93. University of Göttingen, Germany.
Simándi, L. I., Barna, T., Argay, G. \& Simándi, T. L. (1995). Inorg. Chem. 34, 6337-6340.
Suzuki, T., Kaizaki, S. \& Kashiwabara, K. (2000).Inorg. Chim. Acta, 298, 131-140.
Suzuki, T., Kashiwabara, K., Kita, M., Fujita, J. \& Kaizaki, S. (1998). Inorg. Chim. Acta, 281, 77-84.
Suzuki, T., Ogita, M., Imamura, T. \& Kaizaki, S. (1996). Abstracts of the 31st International Conference on Coordination Chemistry, Vancouver, Canada, p. 9L5.

